Skip to main content
Log in

Chemokine-mimetic plerixafor derivative for tumor-specific delivery of nanomaterials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Here, we report that chemokine-mimetic plerixafor derivatives could govern tumor-specific delivery and functional effects of nanomaterials. Reduced graphene oxide (rGO) nanosheets were used as a model functional nanomaterial, and plerixafor-conjugated lipid (PL/rGO) or a benzylcyclam derivative of plerixafor-conjugated lipid (BPL/rGO) was physically adsorbed onto the surface of rGO. The cellular uptake of surface-modified rGO was dependent on overexpression of the CXCR4 chemokine receptor on cancer cells. In KB cells, the binding affinity of BPL/rGO for CXCR4 was 6.8-fold greater than that of PL/rGO. Notably, cellular uptake patterns correlated with in vitro photothermal anticancer efficacy. The tumor distribution of BPL/rGO was higher than that of PL/rGO and plain rGO in mice bearing CXCR4-overexpressing tumors, whereas the distribution of the various rGO forms was similar in mice harboring CXCR4-negative tumors. Moreover, complete photothermal tumor ablation was observed in BPL/rGO-treated mice bearing CXCR4-positive KB cell tumors, but not in CXCR4-negative MCF-7 cell tumors. These results provide evidence that BPL can be used to enhance the delivery of nanomaterials to CXCR4-overexpressing tumors. Chemokine-mimetic BPL can be further applied for nanomaterial-based delivery of photosensitizers, anticancer drugs, or diagnostic tumor imaging agents in CXCR4-overexpressing cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chow, M. T.; Luster, A. D. Chemokines in cancer. Cancer Immunol. Res. 2014, 2, 1125–1131.

    Article  Google Scholar 

  2. Sarvaiya, P. J.; Guo, D. N.; Uslasov, I. V.; Gabikian, P.; Lesniak, M. S. Chemokines in tumor progression and metastasis. Oncotarget 2013, 4, 2171–2185.

    Article  Google Scholar 

  3. Jacquelot, N.; Enot, D. P.; Flament, C.; Vimond, N.; Blattner, C.; Pitt, J. M.; Yamazaki, T.; Roberti, M. P.; Daillère, R.; Vétizou, M. et al. Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. J. Clin. Invest. 2016, 126, 921–937.

    Article  Google Scholar 

  4. Guo, F.; Wang, Y.; Liu, J.; Mok, S. C.; Xue, F.; Zhang, W. CXCL12/CXCR4: A symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene 2016, 35, 816–826.

    Article  Google Scholar 

  5. Chatterjee, S.; Behnam Azad, B.; Nimmagadda, S. The intricate role of CXCR4 in cancer. Adv. Cancer Res. 2014, 124, 31–82.

    Article  Google Scholar 

  6. Debnath, B.; Xu, S. L.; Grande, F.; Garofalo, A.; Neamati, N. Small molecule inhibitors of CXCR4. Theranostics 2013, 3, 47–75.

    Article  Google Scholar 

  7. Conley-LaComb, M. K.; Semaan, L.; Singareddy, R.; Li, Y. F.; Heath, E. I.; Kim, S.; Cher, M. L.; Chinni, S. R. Pharmacological targeting of CXCL12/CXCR4 signaling in prostate cancer bone metastasis. Mol. Cancer 2016, 15, 68.

    Article  Google Scholar 

  8. Keating, G. M. Plerixafor: A review of its use in stem-cell mobilization in patients with lymphoma or multiple myeloma. Drugs 2011, 71, 1623–1647.

    Article  Google Scholar 

  9. Chaudary, N.; Pintilie, M.; Jelveh, S.; Lindsay, P.; Hill, R. P.; Milosevic, M. Plerixafor improves primary tumor response and reduces metastases in cervical cancer treated with radio-chemotherapy. Clin. Cancer Res. 2017, 23, 1242–1249.

    Article  Google Scholar 

  10. Hu, L.; Gao, S. J.; Ding, X. G.; Wang, D.; Jiang, J.; Jin, J.; Jiang, L. Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 2015, 9, 4835–4842.

    Article  Google Scholar 

  11. Chen, Y. W.; Su, Y. L.; Hu, S. H.; Chen, S. Y. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev. 2016, 105, 190–204.

    Article  Google Scholar 

  12. Song, J. B.; Yang, X. Y.; Jacobson, O.; Lin, L. S.; Huang, P.; Niu, G.; Ma, Q. J.; Chen, X. Y. Sequential drug release and enhanced photothermal and photoacoustic effect of hybrid reduced graphene oxide-loaded ultrasmall gold nanorod vesicles for cancer therapy. ACS Nano 2015, 9, 9199–9209.

    Article  Google Scholar 

  13. Shim, G.; Kim, M. G.; Park, J. Y.; Oh, Y. K. Graphene-based nanosheets for delivery of chemotherapeutics and biological drugs. Adv. Drug Deliv. Rev. 2016, 105, 205–227.

    Article  Google Scholar 

  14. Kim, M. G.; Shon, Y.; Kim, J.; Oh, Y. K. Selective activation of anticancer chemotherapy by cancer-associated fibroblasts in the tumor microenvironment. J. Natl. Cancer Inst. 2017, 109, djw186.

    Article  Google Scholar 

  15. Smith, B. R.; Ghosn, E. E.; Rallapalli, H.; Prescher, J. A.; Larson, T.; Herzenberg, L. A.; Gambhir, S. S. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery. Nat. Nanotechnol. 2014, 9, 481–487.

    Article  Google Scholar 

  16. Orecchioni, M.; Cabizza, R.; Bianco, A.; Delogu, L. G. Graphene as cancer theranostic tool: Progress and future challenges. Theranostics 2015, 5, 710–723.

    Article  Google Scholar 

  17. Jang, M.; Kim, J. H.; Nam, H. Y.; Kwon, I. C.; Ahn, H. J. Design of a platform technology for systemic delivery of siRNA to tumours using rolling circle transcription. Nat. Commun. 2015, 6, 7930.

    Article  Google Scholar 

  18. Huang, S. N.; Duan, S. F.; Wang, J.; Bao, S. J.; Qiu, X. J.; Li, C. M.; Liu, Y.; Yan, L. J.; Zhang, Z. Z.; Hu, Y. R. Folic-acid-mediated functionalized gold nanocages for targeted delivery of anti-miR-181b in combination of gene therapy and photothermal therapy against hepatocellular carcinoma. Adv. Funct. Mater. 2016, 26, 2532–2544.

    Article  Google Scholar 

  19. Zhen, Z. P.; Tang, W.; Chen, H. M.; Lin, X.; Todd, T.; Wang, G.; Cowger, T.; Chen, X. Y.; Xie, J. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano 2013, 7, 4830–4837.

    Article  Google Scholar 

  20. Yang, H.; Qin, C. Y.; Yu, C.; Lu, Y.; Zhang, H. W.; Xue, F. F.; Wu, D. M.; Zhou, Z. G.; Yang, S. P. RGD-conjugated nanoscale coordination polymers for targeted T1- and T2-weighted magnetic resonance imaging of tumors in vivo. Adv. Funct. Mater. 2014, 26, 1738–1747.

    Article  Google Scholar 

  21. Zhang, L. W.; Gao, S.; Zhang, F.; Yang, K.; Ma, Q. J.; Zhu, L. Activatable hyaluronic acid nanoparticle as a theranostic agent for optical/photoacoustic image-guided photothermal therapy. ACS Nano 2014, 8, 12250–12258.

    Article  Google Scholar 

  22. Shim, G.; Lee, J.; Kim, J.; Lee, H. J.; Kim, Y. B.; Oh, Y. K. Functionalization of nano-graphenes by chimeric peptide engineering. RSC Adv. 2015, 5, 49905–49913.

    Article  Google Scholar 

  23. Rui, L. F.; Liu, J. J.; Li, J. L.; Weng, Y. Y.; Dou, Y. J.; Yuan, B.; Yang, K.; Ma, Y. Q. Reduced graphene oxide directed self-assembly of phospholipid monolayers in liquid and gel phases. Biochim. Biophys. Acta-Biomembranes 2015, 1848, 1203–1211.

    Article  Google Scholar 

  24. Akhavan, O.; Ghaderi, A. E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy. Small 2013, 9, 3593–3601.

    Article  Google Scholar 

  25. Rosenkilde, M. M.; Gerlach, L. O.; Hatse, S.; Skerlj, R. T.; Schols, D.; Bridger, G. J.; Schwartz, T. W. Molecular mechanism of action of monocyclam versus bicyclam nonpeptide antagonists in the CXCR4 chemokine receptor. J. Biol. Chem. 2007, 282, 27354–27365.

    Article  Google Scholar 

  26. Gerlach, L. O.; Jakobsen, J. S.; Jensen, K. P.; Rosenkilde, M. R.; Skerlj, R. T.; Ryde, U.; Bridger, G. J.; Schwartz, T. W. Metal ion enhanced binding of AMD3100 to Asp262 in the CXCR4 receptor. Biochemistry 2003, 42, 710–717.

    Article  Google Scholar 

  27. Demmer, O.; Dijkgraaf, I.; Schumacher, U.; Marinelli, L.; Cosconati, S.; Gourni, E.; Wester, H. J.; Kessler, H. Design, synthesis, and functionalization of dimeric peptides targeting chemokine receptor CXCR4. J. Med. Chem. 2011, 54, 7648–7662.

    Article  Google Scholar 

  28. Lössner, D.; Kessler, H.; Thumshirn, G.; Dahmen, C.; Wiltschi, B.; Tanaka, M.; Knoll, W.; Sinner, E. K.; Reuning, U. Binding of small mono- and oligomeric integrin ligands to membrane-embedded integrins monitored by surface plasmon-enhanced fluorescence spectroscopy. Anal. Chem. 2006, 78, 4524–4533.

    Article  Google Scholar 

  29. Blattes, E.; Vercellone, A.; Eutamène, H.; Turrin, C. O.; Théodorou, V.; Majoral, J. P.; Caminade, A. M.; Prandi, J.; Nigou, J.; Puzo, G. Mannodendrimers prevent acute lung inflammation by inhibiting neutrophil recruitment. Proc. Natl. Acad. Sci. USA 2013, 110, 8795–8800.

    Article  Google Scholar 

  30. Johannssen, T.; Lepenies, B. Glycan-based cell targeting to modulate immune responses. Trends Biotechnol. 2017, 35, 334–346.

    Article  Google Scholar 

  31. Moreno, M. J.; Bosch, R.; Dieguez-Gonzalez, R.; Novelli, S.; Mozos, A.; Gallardo, A.; Pavón, M. A.; Céspedes, M. V.; Grañena, A.; Alcoceba, M. et al. CXCR4 expression enhances diffuse large B cell lymphoma dissemination and decreases patient survival J. Pathol. 2015, 235, 445–455.

    Article  Google Scholar 

  32. Kim, H. Y.; Hwang, J. Y.; Kim, S. W.; Lee, H. J.; Yun, H. J.; Kim, S.; Jo, D. Y. The CXCR4 antagonist AMD3100 has dual effects on survival and proliferation of myeloma cells in vitro. Cancer Res. Treat. 2010, 42, 225–234.

    Article  Google Scholar 

  33. Bazak, R.; Houri, M.; El Achy, S.; Kamel, S.; Refaat, T. Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Cancer Res. Clin. Oncol. 2015, 141, 769–784.

    Article  Google Scholar 

  34. Bertrand, N.; Wu, J.; Xu, X. Y.; Kamaly, N.; Farokhzad, O. C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014, 66, 2–25.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Ministry of Science and ICT, Republic of Korea (No. NRF-2015R1A2A1A01005674) and the Korean Health Technology R&D Project (No. HI15C2842), Ministry of Health & Welfare, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Kyoung Oh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, S., Shim, G., Kim, J. et al. Chemokine-mimetic plerixafor derivative for tumor-specific delivery of nanomaterials. Nano Res. 11, 2159–2172 (2018). https://doi.org/10.1007/s12274-017-1833-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1833-7

Keywords

Navigation