Skip to main content

Advertisement

Log in

Cationic Liposomal Co-delivery of Small Interfering RNA and a MEK Inhibitor for Enhanced Anticancer Efficacy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To test whether co-delivery of anticancer small interfering RNA (siRNA) and a chemical MEK inhibitor using cationic liposomes enhances anticancer activity in vitro and in vivo.

Method

MEK inhibitor PD0325901 was encapsulated in lipid layers of N',N''-dioleylglutamide-based cationic liposomes (DGL). Mcl1-specific siRNA (siMcl1) was complexed to DGL or PD0325901-loaded liposomes (PDGL). Efficiency of cellular siRNA delivery was tested using fluorescent double-stranded RNA. Silencing of target proteins was evaluated using Western blotting and real-time quantitative polymerase chain reactions. In vivo anticancer activity was tested using xenografted mice.

Results

Size and zeta potential of PDGL were similar to DGL. PDGL could deliver double-stranded RNA into cells with efficiencies comparable to DGL. Cellular co-delivery of siMcl1 and PD0325901 reduced expression of Mcl1 and pERK1/2 proteins and more effectively reduced tumor cell survival than other treatments. In mice, siMcl1 and PD0325901 co-delivered by PDGL inhibited growth of tumors 79%. Substantial apoptosis of tumor cells was observed following PDGL-mediated co-delivery of siMcl1, but not in other groups.

Conclusions

PDGL-mediated co-delivery of siMcl1 and MEK inhibitor, PD0325901, could serve as a potential strategy for combination chemogene anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DG:

N’,N”-dioleylglutamide

DGL:

DG-based cationic liposomes

DOPE:

dioleyl-sn-glycero-3-phosphoethanolamine

dsRNA:

double-stranded RNA

ERK:

extracellular signal-related kinase

GAPDH:

glyceraldehyde-3-phosphate dehydrogenase

L2K:

Lipofectamine 2000

Mcl1:

myeloid cell leukemia sequence 1

MEK:

mitogen-activated protein/extracellular signal-regulated kinase kinase

MTT:

3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide

PCR:

polymerase chain reaction

PDGL:

PD0325901-loaded cationic liposomes

pERK1/2:

phospho-ERK1/2

siGL2:

luciferase-specific siRNA

siMcl1:

Mcl1-specific siRNA

siRNA:

small interfering RNA

REFERENCES

  1. Kato T, Natsume A, Toda H, Iwamizu H, Sugita T, Hachisu R, et al. Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther. 2010;17:1363–72.

    Article  PubMed  CAS  Google Scholar 

  2. Simonin K, Brotin E, Dufort S, Dutoit S, Goux D, N'diaye M, et al. Mcl-1 is an important determinant of the apoptotic response to the BH3-mimetic molecule HA14-1 in cisplatin-resistant ovarian carcinoma cells. Mol Cancer Ther. 2009;8:3162–70.

    Article  PubMed  CAS  Google Scholar 

  3. Singh A, Boldin-Adamsky S, Thimmulappa RK, Rath SK, Ashush H, Coulter J, et al. RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer Res. 2008;68:7975–84.

    Article  PubMed  CAS  Google Scholar 

  4. Patil YB, Swaminathan SK, Sadhukha T, Ma L, Panyam J. The use of nanoparticle-mediated targeted gene silencing and drug delivery to overcome tumor drug resistance. Biomaterials. 2010;31:358–65.

    Article  PubMed  CAS  Google Scholar 

  5. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, et al. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small. 2009;5:2673–7.

    Article  PubMed  CAS  Google Scholar 

  6. Meng H, Liong M, Xia T, Li Z, Ji Z, Zink JI, et al. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano. 2010;4:4539–50.

    Article  PubMed  CAS  Google Scholar 

  7. Chen Y, Bathula SR, Li J, Huang L. Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer. J Biol Chem. 2010;285:22639–50.

    Article  PubMed  CAS  Google Scholar 

  8. Azmi AS, Wang Z, Philip PA, Mohammad RM, Sarkar FH. Proof of concept: network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol Cancer Ther. 2010;9:3137–44.

    Article  PubMed  CAS  Google Scholar 

  9. Wang D, Boerner SA, Winkler JD, LoRusso PM. Clinical experience of MEK inhibitors in cancer therapy. Biochim Biophys Acta: Mol Cell Res. 2007;1773:1248–55.

    Article  CAS  Google Scholar 

  10. Haura EB, Ricart AD, Larson TG, Stella PJ, Bazhenova L, Miller VA, et al. A phase II study of PD-0325901, an oral MEK inhibitor, in previously treated patients with advanced non-small cell lung cancer. Clin Cancer Res. 2010;16:2450–7.

    Article  PubMed  CAS  Google Scholar 

  11. Ciuffreda L, Del Bufalo D, Desideri M, Di Sanza C, Stoppacciaro A, Ricciardi MR, et al. Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations. Neoplasia. 2009;11:720–31.

    PubMed  CAS  Google Scholar 

  12. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773:1263–84.

    Article  PubMed  CAS  Google Scholar 

  13. Rinehart J, Adjei AA, Lorusso PM, Waterhouse D, Hecht JR, Natale RB, et al. Multicenter phase II study of the oral MEK inhibitor, CI-1040, in patients with advanced non-small-cell lung, breast, colon, and pancreatic cancer. J Clin Oncol. 2004;22:4456–62.

    Article  PubMed  CAS  Google Scholar 

  14. Henderson YC, Chen Y, Frederick MJ, Lai SY, Clayman GL. MEK inhibitor PD0325901 significantly reduces the growth of papillary thyroid carcinoma cells in vitro and in vivo. Mol Cancer Ther. 2010;9:1968–76.

    Article  PubMed  CAS  Google Scholar 

  15. Kinkade CW, Castillo-Martin M, Puzio-Kuter A, Yan J, Foster TH, Gao H, et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J Clin Invest. 2008;118:3051–64.

    PubMed  CAS  Google Scholar 

  16. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.

    Article  PubMed  CAS  Google Scholar 

  17. Song L, Coppola D, Livingston S, Cress D, Haura EB. Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther. 2005;4:267–76.

    Article  PubMed  CAS  Google Scholar 

  18. Wei S-H, Dong K, Lin F, Wang X, Li B, Shen JJ, et al. Inducing apoptosis and enhancing chemosensitivity to Gemcitabine via RNA interference targeting Mcl-1 gene in pancreatic carcinoma cell. Cancer Chemo Pharmacol. 2008;62:1055–64.

    Article  CAS  Google Scholar 

  19. Oh YK, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61:850–62.

    Article  PubMed  CAS  Google Scholar 

  20. Kim WJ, Kim SW. Efficient siRNA delivery with non-viral polymeric vehicles. Pharm Res. 2009;26:657–66.

    Article  PubMed  CAS  Google Scholar 

  21. Nguyen J, Reul R, Roesler S, Dayyoub E, Schmehl T, Gessler T, et al. Amine-modified poly(vinyl alcohol)s as non-viral vectors for siRNA delivery: effects of the degree of amine substitution on physicochemical properties and knockdown efficiency. Pharm Res. 2010;27:2670–82.

    Article  PubMed  CAS  Google Scholar 

  22. Suh MS, Shim G, Lee HY, Han S-E, Yu Y-H, Choi Y, et al. Anionic amino acid-derived cationic lipid for siRNA delivery. J Control Release. 2009;140:268–76.

    Article  PubMed  CAS  Google Scholar 

  23. Oh YK, Suh D, Kim JM, Choi HG, Shin K, Ko JJ. Polyethylenimine-mediated cellular uptake, nucleus trafficking and expression of cytokine plasmid DNA. Gene Ther. 2002;9:1627–32.

    Article  PubMed  CAS  Google Scholar 

  24. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev. 2010;62:12–27.

    Article  PubMed  CAS  Google Scholar 

  25. Wei SH, Dong K, Lin F, Wang X, Li B, Shen JJ, et al. Inducing apoptosis and enhancing chemosensitivity to gemcitabine via RNA interference targeting Mcl-1 gene in pancreatic carcinoma cell. Cancer Chemother Pharmacol. 2008;62:1055–64.

    Article  PubMed  CAS  Google Scholar 

  26. Del Prete MJ, Robles MS, Guáo A, Martínez-A C, Izquierdo M, Garcia-Sanz JA. Degradation of cellular mRNA is a general early apoptosis-induced event. FASEB J. 2002;16:2003–5.

    PubMed  Google Scholar 

  27. Sun TM, Du JZ, Yao YD, Mao CQ, Dou S, Huang SY, et al. Simultaneous delivery of siRNA and paclitaxel via a “two-in-one” micelleplex promotes synergistic tumor suppression. ACS Nano. 2011;5:1483–94.

    Article  PubMed  CAS  Google Scholar 

  28. Cao N, Cheng D, Zou S, Ai H, Gao J, Shuai X. The synergistic effect of hierarchical assemblies of siRNA and chemotherapeutic drugs co-delivered into hepatic cancer cells. Biomaterials. 2011;32:2222–32.

    Article  PubMed  CAS  Google Scholar 

  29. Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG, et al. Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers. Biomaterials. 2010;31:2408–16.

    Article  PubMed  CAS  Google Scholar 

  30. Brown AP, Carlson TC, Loi CM, Graziano MJ. Pharmacodynamic and toxicokinetic evaluation of the novel MEK inhibitor, PD0325901, in the rat following oral and intravenous administration. Cancer Chemother Pharmacol. 2007;59:671–9.

    Article  PubMed  CAS  Google Scholar 

  31. Brown AP. Development of serum calcium and phosphorus as clinical biomarkers for drug-induced systemic mineralization: case study with a MEK inhibitor. In: Bleavins MR, Carini C, Jurima-Romet M, Rahbari R, editors. Biomarkers in drug development: a handbook of practice, application, and strategy. Hoboken: John Wiley & Sons; 2010. p. 301–22.

    Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This study was financially supported by a grant of the Korean Health Technology R&D Project (Grant No. A090945), Ministry for Health, Welfare & Family Affairs, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Kyoung Oh.

Additional information

Seung Hee Kang and Hee-Jeong Cho contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

Effect of N/P ratios on cellular uptake of fluorescent dsRNA/PDGL complexes. (PPT 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, S.H., Cho, HJ., Shim, G. et al. Cationic Liposomal Co-delivery of Small Interfering RNA and a MEK Inhibitor for Enhanced Anticancer Efficacy. Pharm Res 28, 3069–3078 (2011). https://doi.org/10.1007/s11095-011-0569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0569-4

KEY WORDS

Navigation