Noncovalent tethering of nucleic acid aptamer on DNA nanostructure for targeted photo/chemo/gene therapies
- Journal
- Nanomedicine (SCIE)
- Vol
- 24
- Page
- 102053
- Year
- 2020
- Link
- https://doi.org/10.1016/j.nano.2019.102053 73회 연결
Abstract
Here, we report various therapeutic cargo-loadable DNA nanostructures that are shelled in polydopamine and noncovalently tethered with cancer cell-targeting DNA aptamers. Initial DNA nanostructure was formed by rolling-circle amplification and condensation with Mu peptides. This DNA nanostructure was loaded with an antisense oligonucleotide, a photosensitizer, or an anticancer chemotherapeutic drug. Each therapeutic agent-loaded DNA nanostructure was then shelled with polydopamine (PDA), and noncovalently decorated with a poly adenine-tailed nucleic acid aptamer (PA) specific for PTK7 receptor, resulting in PA-tethered and PDA-shelled DNA nanostructure (PA/PDN). PDA coating shell enabled photothermal therapy. In the cells overexpressing PTK7 receptor, photosensitizer-loaded PA/PDN showed greater photodynamic activity. Doxorubicin-loaded PA/PDN exerted higher anticancer activity than the other groups. Antisense oligonucleotide-loaded PA/PDN provided selective reduction of target proteins compared with other groups. Our results suggest that the PA-tethered and PDA-shelled DNA nanostructures could enable the specific receptor-targeted phototherapy, chemotherapy, and gene therapy against cancer cells.
Here, we report various therapeutic cargo-loadable DNA nanostructures that are shelled in polydopamine and noncovalently tethered with cancer cell-targeting DNA aptamers. Initial DNA nanostructure was formed by rolling-circle amplification and condensation with Mu peptides. This DNA nanostructure was loaded with an antisense oligonucleotide, a photosensitizer, or an anticancer chemotherapeutic drug. Each therapeutic agent-loaded DNA nanostructure was then shelled with polydopamine (PDA), and noncovalently decorated with a poly adenine-tailed nucleic acid aptamer (PA) specific for PTK7 receptor, resulting in PA-tethered and PDA-shelled DNA nanostructure (PA/PDN). PDA coating shell enabled photothermal therapy. In the cells overexpressing PTK7 receptor, photosensitizer-loaded PA/PDN showed greater photodynamic activity. Doxorubicin-loaded PA/PDN exerted higher anticancer activity than the other groups. Antisense oligonucleotide-loaded PA/PDN provided selective reduction of target proteins compared with other groups. Our results suggest that the PA-tethered and PDA-shelled DNA nanostructures could enable the specific receptor-targeted phototherapy, chemotherapy, and gene therapy against cancer cells.