Copyright (c)
Shim Lab All Rights Reserved. Design by DSSO.KR

Paper

Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs.
Author
Gayong Shim, Ji-Young Kim, Han Jeonghoon, Seung Woo Chung, Soondong Lee, Youngro Byun, Yu-Kyoung Oh
Journal
Journal of Controlled Release (SCIE)
Vol
189
Page
80-89
Year
2014
헤파린유도체와 항암약물을 탑재한 나노그래핀 제제화 연구

Abstract
Here, we report reduced graphene oxide (rGO) nanosheets coated with an anti-angiogenic anticancer taurocholate derivative of low-molecular-weight heparin (LHT7) as a tumor-targeting nanodelivery platform for anticancer drugs. Surface coating of LHT7 onto rGO was confirmed using fluorescein isothiocyanate-labeled LHT7, monitored as fluorescence quenching due to associated rGO. Unlike plain rGO, LHT7-coated rGO (LHT-rGO) nanosheets maintained a stable dispersion under physiological conditions for at least 24 h. Moreover, LHT-rGO provided greater loading capacity for doxorubicin (Dox) compared with uncoated rGO nanosheets. Following intravenous administration into KB tumor-bearing mice, in vivo tumor accumulation of LHT-rGO/Dox was 7-fold higher than that of rGO/Dox 24 h post dosing. In tumor tissues, LHT-rGO/Dox was shown to localize not to the tumor vasculature, but rather to tumor cells. Intravenously administered LHT-rGO/Dox showed the greatest anti-tumor effect in KB-bearing mice, reducing tumor volume by 92.5% ± 3.1% compared to the untreated group 25 days after tumor inoculation. TUNEL assays revealed that the population of apoptotic cells was highest in the group treated with LHT-rGO/Dox. Taken together, our results demonstrate that LHT-rGO nanosheets confer improved dispersion stability, tumor distribution and in vivo antitumor effects, and may be further developed as a potential active nanoplatform of various anticancer drugs.